# Introduction to Circuits

## Christalee Bieber & Abigail Seligsohn September 15, 2013



#### Example #1: Household Wiring



 Have you seen something like this in your home?

• What components can you identify?

• Where do the wires come from, where do they go?

• Why are there differentcolored wires?



Photo by pcutler on Flickr.

#### Example #2: Breadboard



Photo by Lauri Rantala on Flickr.



#### Example #3: Perfboard (front)



Photo by InductiveLoad on Wikimedia Commons.



#### Example #3: Perfboard (back)



Photo by InductiveLoad on Wikimedia Commons.



#### Example #4: Squishy Circuits



Photo by Tim Bieniosek.



#### Example #5: Sewable Circuits





#### Example #6: Surface-Mount (PCB)



Photo by Andrew Magill on Flickr.



#### What's a Voltage Source?

- Symbol: V
- Units: V (volt)
- Diagram:



A voltage source can be a battery, a power cord, a generator, a capacitor, or anything else that creates or stores power. The voltage measures how much potential energy it gives the electrons flowing out of it. One electron with one volt has a total energy of  $1eV = 1.6 \times 10^{-19}$  J



#### What's a Resistor?

- Symbol: R
- Units:  $\Omega$  (ohm)
- Diagram:

Photo by Omegatron on Wikimedia Commons.



Resistors impede the flow of current through a circuit, dissipating its power through heat, light, or other work. Many circuit elements have a resistance or can be modeled as one, along with their other functions.



#### How To Read a Resistor



| Color  | Significant<br>figures | Multiplier        | Tolerance        |   | Temp.<br>Coefficient<br>(ppm/K) |   |
|--------|------------------------|-------------------|------------------|---|---------------------------------|---|
| Black  | 0                      | ×10 <sup>0</sup>  | -                |   | 250                             | U |
| Brown  | 1                      | ×10 <sup>1</sup>  | ±1%              | F | 100                             | S |
| Red    | 2                      | ×10 <sup>2</sup>  | ±2%              | G | 50                              | R |
| Orange | 3                      | ×10 <sup>3</sup>  |                  |   | 15                              | Р |
| Yellow | 4                      | ×10 <sup>4</sup>  | (±5%)            | - | 25                              | Q |
| Green  | 5                      | ×10 <sup>5</sup>  | ±0.5%            | D | 20                              | z |
| Blue   | 6                      | ×10 <sup>6</sup>  | ±0.25%           | С | 10                              | Z |
| Violet | 7                      | ×10 <sup>7</sup>  | ±0.1%            | В | 5                               | м |
| Gray   | 8                      | ×10 <sup>8</sup>  | ±0.05%<br>(±10%) | А | 1                               | к |
| White  | 9                      | ×10 <sup>9</sup>  | -                |   | 2                               |   |
| Gold   | - 1                    | ×10 <sup>-1</sup> | ±5%              | J |                                 |   |
| Silver | -                      | ×10 <sup>-2</sup> | ±10%             | к | -                               |   |
| None   | -                      | -                 | ±20%             | м | -                               |   |

Photo by Omegatron on Wikimedia Commons. Resistor color chart from Wikipedia.



#### **Special Resistors**





#### What's a Diode?



Diodes have a nonlinear relationship between current and voltage, unlike regular resistors. They are also one-directional.

#### How To Use a Breadboard

Connect V+ here
Connect V- here

Build your circuit in the middle

Keep in mind which rows and columns are connected!

Don't forget to connect V+ and V- to your circuit!

Derived from an image by McSush on Wikimedia Commons.



#### How To Use a Breadboard



Keep in mind which rows and columns are connected!

Don't forget to connect V+ and V- to your circuit!

**IACKTO** 

Derived from an image by McSush on Wikimedia Commons.

#### What's a Switch?

# Switches are physical interrupts in your circuit.

- Symbol: SPST, SPDT
- Units: n/a
- Diagram:





Photo by ArnoldReinhold at Wikimedia Commons.



#### What's a Capacitor?

- Symbol: C
- Units: F (farad)
- Diagram:



Photo by Mamun2a on Wikimedia Commons.

Capacitors are directional, like diodes. They store charge when attached to a voltage, and act as a voltage source when charged.



#### What Did We Learn?

- Circuits use voltage sources to push current through loads
- How batteries, resistors, LEDs, switches, and capacitors work
- Some components are directional, so polarity is important
- How to prototype a circuit on a breadboard
- Current, voltage, and resistance in series & parallel circuits
- How to troubleshoot and use a multimeter
- How to design a circuit with datasheet information
- Safe practices for people and electronics!



## **Coming Attractions**

Cider Pressing, September 17, 6pm

Light Up Crescent Park, September 18-27

Costuming Workshops: LED Masks, EL Wire, Lilypad Basics, & More! TBD (October)

Galactic Gatsby Masquerade, November 2, 9pm

